WEEK FIVE

Expressions and
Assignment Statements

Chapter 7 Topics

e Introduction

e Arithmetic Expressions

e Overloaded Operators

 Type Conversions

e Relational and Boolean Expressions
e Short-Circuit Evaluation

e Assignment Statements

 Mixed-Mode Assignment

Copyright © 2006 Addison-Wesley. All rights reserved.

1-2

Introduction

e Expressions are the fundamental means of specifying
computations in a programming language

* To understand expression evaluation, need to be
familiar with the orders of operator and operand
evaluation

* Essence of imperative languages 1s dominant role of
assignment statements

Copyright © 2006 Addison-Wesley. All rights reserved. 1-3

Arithmetic Expressions

e Arithmetic evaluation was one of the motivations for
the development of the first programming languages

e Arithmetic expressions consist of operators,
operands, parentheses, and function calls

Copyright © 2006 Addison-Wesley. All rights reserved. 1-4

Arithmetic Expressions

Primary

Postfix

Unary
Binary
Ternary
Assignment

e
Comma

identifier, constant, or parenthetical expression

primary
expression

operator

operator

postfix

unary
expression

binary
expression

variable

expression

operator

operator

opcrator

operator

ﬁ
-
4]
W
wn
[l
@]
=

unary
expression

expression

expression

expression

*These expression types are unique to the C Language

Copyright © 2006 Addison-Wesley. All rights reserved.

operator

expression

1-5

Arithmetic Expressions: Operators

* A unary operator has one operand
e A binary operator has two operands

e A ternary operator has three operands

Copyright © 2006 Addison-Wesley. All rights reserved.

1-6

Arithmetic Expressions: Design Issues

e order of operator evaluation
— operator precedence rules
— operator associativity rules
— Parentheses

— Conditional expressions

e order of operand evaluation

— side effects

Copyright © 2006 Addison-Wesley. All rights reserved.

1-7

Arithmetic Expressions: Operator Evaluation
Order

e The operator precedence rules for expression
evaluation define the order in which “adjacent”
operators of different precedence levels are
evaluated

e The operator associativity rules for expression
evaluation define the order in which adjacent
operators with the same precedence level are
evaluated

Copyright © 2006 Addison-Wesley. All rights reserved. 1-8

Arithmetic Expressions: Operator Precedence Rules

* Binary operators are mostly infix.
e Some are prefix in Perl.
* Typical precedence levels

— parentheses

— unary operators

— % (if the language supports it)
_ %

— +,_

Copyright © 2006 Addison-Wesley. All rights reserved.

1-9

Arithmetic Expressions: Operator Precedence Rules

* Precedence, associativity (see Figure 6.1)
— C has 15 levels - too many to remember
— Pascal has 3 levels - too few for good semantics

— Fortran has 8
— Ada has 6

e Ada puts and & or at same level

— Lesson: when unsure, use parentheses!

Copyright © 2006 Addison-Wesley. All rights reserved. 1-10

Fortran Pascal i Ada
++, —— (post-inc., dec.)
== not ++, —= (pre-inc., dec.), abs {absolute value),
+; — (unarv}, not, ®*
&, = (address, contents of),
1, ~ {logical, bit-wise not)
=/ = 7, *= (binarv), /, =, /. mod, rem

divw, mod, and

% (module division)

+, — (nnarvy
and binary)

+, — (unary and
binarv}, or

+, — (binary)

+, — (unary)

<<, >>
{left and right bit shift)

+, — (binary),
& (concatenation)

- T« (RO o SRR [y e <, €=, >, »=, T e =,/ /=,<, €=, >, »=
N BTN - o PR 1 =, «» TN (inequality tests)
{comparisons)
ook . ==; != (equality tests)

& (bit-wise and)

= (bit-wise exclusive or)

| {bit-wise inclusive or)
.and &% (logical and) and, or, xor

{logical operators)

LOT. Il {logical or)

.egy ., .O0egwv.
(logical comparisons)

?: (if .. .then...else)

»
pr=, <d=, k=, T=, |=
{assignment)

=, =, —=, ¥=, -l"r=;| .:";7,

Copyright © 2006 Addison-Wesley. All rights reserved.

» Lsequencing)

Arithmetic Expressions: Operator Associativity
Rule

e Typical associativity rules
— Left to right, except **, which is right to left

— Sometimes unary operators associate right to left (e.g., in
FORTRAN)

* APL is different; all operators have equal precedence
and all operators associate right to left

* Precedence and associativity rules can be overriden
with parentheses

Copyright © 2006 Addison-Wesley. All rights reserved. 1-12

Arithmetic Expressions: Conditional
Expressions

* Conditional Expressions
— C-based languages (e.g., C, C++)
expl ? exprZ2 : exp3

— An example:

average = (count == 0)? 0 : sum / count

— Evaluates as if written like
1f (count == 0) average = 0

else average = sum /count

Copyright © 2006 Addison-Wesley. All rights reserved.

Arithmetic Expressions: Operand Evaluation
Order

e Operand evaluation order
1. Variables: fetch the value from memory

2. Constants: sometimes a fetch from memory; sometimes
the constant is in the machine language instruction

3. Parenthesized expressions: evaluate all operands and
operators first

Copyright © 2006 Addison-Wesley. All rights reserved. 1-14

Arithmetic Expressions: Potentials for Side
Effects

* Functional side effects: when a function changes a
two-way parameter or a non-local variable

e Problem with functional side effects:

— When a function referenced in an expression alters another
operand of the expression; e.g., for a parameter change:

a = 10;
/* assume that fun changes its parameter */

b = a + fun(a);

Copyright © 2006 Addison-Wesley. All rights reserved. 1-15

Functional Side Effects

 Two possible solutions to the problem

1. Write the language definition to disallow functional side
effects

 No two-way parameters in functions
 No non-local references in functions
 Advantage: it works!

e Disadvantage: inflexibility of two-way parameters and non-
local references

2. Write the language definition to demand that operand
evaluation order be fixed

 Disadvantage: limits some compiler optimizations

Copyright © 2006 Addison-Wesley. All rights reserved. 1-16

Overloaded Operators

e Use of an operator for more than one purpose 1s
called operator overloading

e Some are common (e.g., + for int and float)

* Some are potential trouble (e.g., * in C and C++)

— Loss of compiler error detection (omission of an operand
should be a detectable error)

— Some loss of readability

— Can be avoided by introduction of new symbols (e.g.,
Pascal’s div for integer division)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-17

Overloaded Operators (continued)

e C++ and Ada allow user-defined overloaded
operators
* Potential problems:

— Users can define nonsense operations

— Readability may suffer, even when the operators make
sense

Copyright © 2006 Addison-Wesley. All rights reserved.

Type Conversions

* A narrowing conversion 1s one that converts an
object to a type that cannot include all of the values
of the original type

—e.g,floatto1nt

* A widening conversion 1s one in which an object is
converted to a type that can include at least
approximations to all of the values of the original
type

— e.g.,1ntto float

Copyright © 2006 Addison-Wesley. All rights reserved. 1-19

Type Conversions: Mixed Mode

* A mixed-mode expression i1s one that has operands of
different types

* A coercion 1s an implicit type conversion

e Disadvantage of coercions:

— They decrease in the type error detection ability of the
compiler

* In most languages, all numeric types are coerced in
expressions, using widening conversions

e In Ada, there are virtually no coercions in
expressions

Copyright © 2006 Addison-Wesley. All rights reserved. 1-20

Explicit Type Conversions

* Explicit Type Conversions
e (Called casting in C-based language

 Examples
- C: (1nt) angle

Copyright © 2006 Addison-Wesley. All rights reserved. 1-21

Type Conversions: Errors 1n Expressions

e Causes
— Inherent limitations of arithmetic
e.g., division by zero
— Limitations of computer arithmetic

e.g. overflow

e run-time errors are called exceptions

Copyright © 2006 Addison-Wesley. All rights reserved. 1-22

Relational and Boolean Expressions

* Relational Expressions
— Use relational operators and operands of various types
— Evaluate to some Boolean representation

— Operator symbols used vary somewhat among languages
('=, /=, .NE., <>, #)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-23

Relational and Boolean Expressions

* Boolean Expressions

— Operands are Boolean and the result is Boolean

— Example operators

FORTRAN 77 FORTRAN 90 C Ada
.AND. and & & and
.OR. or || or
.NOT. not ! not

XO0r

Copyright © 2006 Addison-Wesley. All rights reserved.

1-24

Relational and Boolean Expressions: No
Boolean Type in C

e C has no Boolean type--it uses int type with O for
false and nonzero for true

* One odd characteristic of C’s expressions:

a < b < c isalegal expression, but the result 1s
not what you might expect:
— Left operator 1s evaluated, producing O or 1

— The evaluation result is then compared with the third
operand (1.e., ¢)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-25

Relational and Boolean Expressions: Operator
Precedence

* Precedence of C-based operators
postfix ++, -—--
unary +, -, prefix ++, —-—, |
* , / , S
binary +, -
<, >, <=, >=

4

& &
|

Copyright © 2006 Addison-Wesley. All rights reserved. 1-26

Short Circuit Evaluation

e An expression in which the result 1s determined
without evaluating all of the operands and/or
operators

e Example: (13*a) * (b/13-1)
If a is zero, there 1s no need to evaluate (b/13-1)
 Problem with non-short-circuit evaluation
index = 1;
while (index < length) && (LIST[index] != wvalue)
index++;

— When index=1length, LIST [index] will cause an indexing
problem (assuming LIST has 1ength -1 elements)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-27

Short Circuit Evaluation (continued)

e (C, C++, and Java: use short-circuit evaluation for the
usual Boolean operators (&& and | |), but also

provide bitwise Boolean operators that are not short
circuit (& and |)

e Ada: programmer can specify either (short-circuit is
specified with and then and or else)

e Short-circuit evaluation exposes the potential

problem of side effects in expressions
eg. (a > b) || (bt+ / 3)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-28

Assignment Statements

* Simple assignments

e Conditional targets
 Compound assignment operators
 Unary assignment operators

e Assignment as an expression

Copyright © 2006 Addison-Wesley. All rights reserved.

1-29

Assignment Statements: Simple Assignment

e The general syntax

<target var> <assign operator> <expression>
e The assignment operator

= FORTRAN, BASIC, PL/1, C, C++, Java

: = ALGOLs, Pascal, Ada

e = can be bad when it is overloaded for the relational
operator for equality

Copyright © 2006 Addison-Wesley. All rights reserved. 1-30

Assignment Statements: Conditional Targets

e Conditional targets (C, C++, and Java)
subtotal

(flag)? total

Which is equivalent to

1f (flag)
total = 0
else
subtotal = 0

Copyright © 2006 Addison-Wesley. All rights reserved.

1-31

Assignment Statements: Compound Operators

* A shorthand method of specifying a commonly
needed form of assignment

e Introduced in ALGOL; adopted by C
 Example

Copyright © 2006 Addison-Wesley. All rights reserved. 1-32

Assignment Statements: Unary Assignment Operators

e Unary assignment operators in C-based languages
combine increment and decrement operations with
assignment

 Examples

sum = ++count
sum = count++
count++

- (count++)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-33

Assignment Statements: Assignment as an Expression

e In C, C++, and Java, the assignment statement
produces a result and can be used as operands

* An example:
while ((ch = getchar())!= EOF) {...}

ch = getchar () is carried out; the result
(assigned to ch) 1s used as a conditional value for the
wh1le statement

Copyright © 2006 Addison-Wesley. All rights reserved. 1-34

Mixed-Mode Assignment

e Assignment statements can also be mixed-mode,
for example
int a, b;
float c;
c =a / b;

* In Pascal, integer variables can be assigned to real
variables, but real variables cannot be assigned to
integers

e In Java, only widening assignment coercions are
done

* In Ada, there 1s no assignment coercion

Copyright © 2006 Addison-Wesley. All rights reserved. 1-35

Summary

* Expressions

* Operator precedence and associativity
e Operator overloading

e Assignment statements

* Mixed-type expressions

e Various forms of assignment

Copyright © 2006 Addison-Wesley. All rights reserved. 1-36

